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Note 

Error Estimation for a Class of 
Differential Eigenproblems 

This note first describes a simple derivation of error estimates for a class of 
2-point boundary value problems, in terms of two variational integrals. Second, it 
explores why, for Riccati and Priifer transformations of a Sturm-Liouville equation, 
these integrals are needed anyway, so that the error estimates come almost for free. 

The idea is simple and may be applicable to higher order systems, but the author 
has not explored this possibility. The NAG library Sturm-Liouville code D02KDF 
uses a version of this method for its error control and has proved robust over some 
six years of use. 

I. THE ESTIMATES 

The kind of BVP we consider is a scalar first-order eigenproblem: determine A 
such that a solution exists for 

4’ = Fjx, d; i) on u<.xY<~ (la) 

d(u)=% 4th) = P. (lb) 

For local uniqueness of ,I it is desirable that dF/di be of one sign. For the author’s 
applcations, existence and uniqueness are guaranteed so they will not be discussed 
further. 

We suppose (la) and (lb) are solved by shooting. That is, for a trial value of 1 
the DE is integrated from the given values at a, h by an initial value code, towards 
a matching point CE [a, h]. The difference between the left and right “legs” 4,(x; 2) 
and #h(~; ,I) at x = c defines a miss-distance function f(1), and a rootfinder is used 
to determine i as the solution of ,f(/l) = 0. 

In practice the initial value code commits an error at each integration step so 
that we obtain a computed miss-distance f(E.); also the final ,? at which the root- 
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finding terminates will not generally have .f(i) exactly zero. We use the model (e.g. 
Gear [l, p. 213) of step-by-step integration, namely, that it can be regarded as 
following the exact “local solution” of (la) through the previous point (x,_ , , q5- ,) 
up to the current .Y,, and then making a jump of size ei, the local error at x,, to the 
computed value 4,. Further we assume that the integrator estimates ei as part of its’ 
step control. 

The solution at the last rootfinding iteration can then be regarded as the exact 
solution of (1 b) together with 

$6’(x) = F(x, f&x); 2) + e(x), u < .Y < h, (2) 

where C(X) = 1, e,b(x - x,), and 6(x - [) denotes the Dirac b-function at x = <, and 
the X, are an enumeration of the integration meshpoints including x = c. Each e, is 
either a local error (on the left shooting leg) or minus a local error (on the right - _ 
leg) or formed of two local errors and the final ,f(A) value (at x = c). Errors in the 
BCs can be modelled by a contribution from I = a and x = h. 

The exact eigenfunction #(.Y) and eigenvalue 3. satisfy (1 b) and 

q5’(.u) = F(.u, d(x); i), a < s < h. (3) 

Subtracting (2) and (3) and applying the mean value theorem gives 

where 

l)(x) = t,J(s) + (1 - t,) d(X), ~(X)=tJ+(l-tr)A, 

and 0 < t, < I. Using the integrating factor 

and the boundary conditions we integrate (4) to obtain 

o=[(~-~)(,~)~~(x)1:=~~~~(x.~(~~):ii(l))~(~-i)+e(x))li7(x)dr 

so from the S-function definition of e(x), 

(4) 

(5) 

(6) 2 - i. = -c A(,~,) E, 
I 
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where H(x), which is arbitrary up to a scalar factor, has been normalized so that 

s 
(; $(x, ljqx); p(x)). M(x) dx = 1. (7) / I 

For the informal Sturm-Liouville discussion below we replace (5), (7) by their 
limits in the case of small errors (jlril, =C, /e,I -+O) defining M(x) by 

M(x) = exp 
I J’ 

- g (x, qqx); i) d.Y 1 (8) 

where 

(x, f#(x); A). M(x) dx = 1. 

Computationally, on the other hand, we replace (6) by the estimate 

(9) 

where a, = &f(x,), A(x) is a numerical version of M(x) and 2, is the initial value 
code’s estimate of e,. In the same way we form an approximate error bound 

where E, is an estimated bound for le,l, for instance the local error tolerance used 
by the code. Suppose that the Ii?, approximate a(.~,) with small relative error. 
(This amounts to assuming that the eigenfunction is well conditioned. For further 
discussion of this in the Sturm-Liouville case see the author’s paper Pryce [3].) 
Then if (e,l < ,?; with high probability and the number of terms in the sum (11) is 
reasonably large, it follows on statistical grounds that the chance of lil- II 
exceeding errbnd is negligible. Similarly, if IP, - e,l is, with high probability, small 
compared with i?, then almost certainly Ii - I. - errestl is small compared with 
errbnd. These assumptions are valid for modern initial-value codes, so (10) and 
(11) are the basis for a robust error control and estimation process, provided the 
eigenfunction is well conditioned with respect to the shooting method. This is con- 
firmed by numerical experiments for Sturm-Liouville problems in Pryce [3]. 

2. COMPUTING THE NORMALIZATION 

The computed m(x) can only be normalized after the integration is finished. In 
fact, we compute scalar multiples 8,R(x), 0,ii;i(x) of the true function, on the left 
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and right shooting legs respectively, and hence “left” and “right” contributions to 
the normalizing integral (7) and to the sums (10) and (1 I), which are 0, and 0, 
times their true values. The continuity of A(x) at s = c determines the ratio 13,: 0, 
and ,(7) gives a second equation from which 0,, 0, are determined. The “left” and 
“right” sums in (lo), (11) are then scaled and added to give errest and errbnd. 

Computationally we replace G(X), P(X) by 4(x), i in (5), (7). One method is to 
adjoin the equations 

^ 
; log M(X) = - 5; (X, $(I); i) (to compute (5)) (12) 

dI ?F 
- = Z (4 d(x); i) M(X) (to compute (7)) 
rix I (13) 

to the differential system and solve them with (say) initial values log M= I= 0 at 
.Y = u for the left leg (.Y = h for the right leg). Errors in numerically integrating (12), 
(13) do not seriously affect the estimation process in the author’s experience; more 
serious are large deviations of 6 from 4 in ill-conditioned cases. Some care is needed 
to avoid over- or underflow in these computations, which is why it can be impor- 
tant to take log A4 rather than A4 as the dependent variable in (12). 

3. THE STURM--LIOUVILLE CASE 

Consider a Sturm- Liouville problem 

(p(s) y’) + (Ex(x) - q(x))j’= 0, u<s<h (14a) 

with (for simplicity) regular BCs 

h, y(h) = h, p(h) y’(h). (14b) 

Various essentially equivalent transformations exist which reduce this to a first 
order eigenproblem (la), (1 b). Examples are: 

(a) Riccati. This changes from the dependent variables y, JJ’ to 4, JJ where 
4 =~J”/J* to obtain the equation pair 

qY= -$l=F,(x,g;;) say; 

where Q is short for /~w,(.x) -q(x). 
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(b) PrGfer. This changes from y, y’ to r, 8 where py’ = r cos 8, y = r sin 0 to 
obtain the equation pair 

~‘=~[~+Q+(~.,)cos~,]=F,(,,,;~) say; 

1 1 

‘I=? P L 1 
-- Q r sin 28. 

In either case the first equation of the pair, together with BCs derived from (14b), 
suffices to determine the eigenvalues 

The remarkable fact is that in both cases, M(x) as defined by (8) reduces to the 
square of the second variable, i.e., y2 for Riccati and r2 for Priifer while the nor- 
malizing integral in (9) reduces to jt y2tv dx, i.e., to the square of the usual 2-norm 
for the eigenfunctions. Hence, if we seek to compute the normalized eigenfunction 
then the error estimation process comes almost for free, the only extra overhead 
being the accumulation of the sums (lo), (11). 

We now show that essentially the same is true of any reduction of the 
Sturm-Liouville problem to the form (1). Since a multiple of a solution of (14a) is a 
solution, there must be a functional relation between the new variable d, and X, and 
y’/y. We write this as 

for some function ,J Direct calculation verifies that 4 then satisfies the DE 

d’ = -f&-c 4) ’ [Q +f(-u, $)‘/P +.f’,(-~2 4)l 
= F(x, ($5; 1.) say, 

and that, if &.x) is a solution of (16) then 

Also, the only place where 1. enters (16) is in Q, so that 

(16) 

(17) 

(18) 

By (17), M(x) is $1 and the normalizing integral (9) reduces to 5: y2w cl,u on using 
this and (18). We deduce that, for any choice (15) of a new variable 4, there is a 
natural choice of a second variable p, namely, 

P = CYY&% 4) for some constant c. (19) 
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The Sturm-Liouville equation then becomes a first-order pair of the form 

qY = F(x, qs; 2) 
aF 

(log p)’ = -% (x, f$; 2) 
(20) 

and error estimation is ready to hand if one integrates the two equations (20). As 
examples: 

(a) The Riccati method above has f(x, 4) = c,J~, hence ji = 1 and p =,v*. 

(b) The Prefer method has ,f(x, CJ~) = cot c$, hence f4 = - cosec’ ~+5 and 
p = - r2 (though r’ would do as well). 

(c) The scaled Priifirr method used by the author in the NAG library code 
D02KDF has the form ,f’(.u, d) = S(.u) cot 4, where S(x) is a suitable positive scal- 
ing function. This also leads to /I = -Y*, where now r is defined by 

pry’ = S’ ‘r cos q5, y = S ~’ ‘r sin 4. 

4. CONCLUSIONS AND COMMENTS 

The method described above has proved very reliable in the NAG routine 
D02KDF, which uses the scaled Priifer transformation, shooting, and an error 
control based on keeping errbnd below a user-specified tolerance. The a posteriori 
normalization method described in Section 2 can readily be adapted to multiple 
shooting, which is appropriate for extremely ill-conditioned Sturm-Liouville 
problems (e.g., symmetric double potential wells in quantum mechanics). It would 
be interesting to study the deeper reasons why, for Sturm-Liouville problems, the 
error estimation comes ready-made in the sense of Section 3, and perhaps thereby 
to extend the method to linear differential eigenproblems of higher order. 
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